邳州信息网

标题: 用 Python 实现 Python 解释器 [打印本页]

作者: 3AAA    时间: 2023-2-27 19:03
标题: 用 Python 实现 Python 解释器
(接上篇)

Byterun

现在我们有足够的 Python 解释器的知识背景去考察 Byterun。

Byterun 中有四种对象。

VirtualMachine类

每次程序运行时只会创建一个VirtualMachine实例,因为我们只有一个 Python 解释器。VirtualMachine保存调用栈、异常状态、在帧之间传递的返回值。它的入口点是run_code方法,它以编译后的代码对象为参数,以创建一个帧为开始,然后运行这个帧。这个帧可能再创建出新的帧;调用栈随着程序的运行而增长和缩短。当第一个帧返回时,执行结束。

Frame类

接下来,我们来写Frame对象。帧是一个属性的集合,它没有任何方法。前面提到过,这些属性包括由编译器生成的代码对象;局部、全局和内置命名空间;前一个帧的引用;一个数据栈;一个块栈;最后执行的指令指针。(对于内置命名空间我们需要多做一点工作,Python 在不同模块中对这个命名空间有不同的处理;但这个细节对我们的虚拟机不重要。)

接着,我们在虚拟机中增加对帧的操作。这有 3 个帮助函数:一个创建新的帧的方法(它负责为新的帧找到名字空间),和压栈和出栈的方法。第四个函数,run_frame,完成执行帧的主要工作,待会我们再讨论这个方法。

Function类

Function的实现有点曲折,但是大部分的细节对理解解释器不重要。重要的是当调用函数时 —— 即调用__call__方法 —— 它创建一个新的Frame并运行它。

接着,回到VirtualMachine对象,我们对数据栈的操作也增加一些帮助方法。字节码操作的栈总是在当前帧的数据栈。这些帮助函数让我们的POP_TOP、LOAD_FAST以及其他操作栈的指令的实现可读性更高。

在我们运行帧之前,我们还需两个方法。

第一个方法,parse_byte_and_args以一个字节码为输入,先检查它是否有参数,如果有,就解析它的参数。这个方法同时也更新帧的last_instruction属性,它指向最后执行的指令。一条没有参数的指令只有一个字节长度,而有参数的字节有3个字节长。参数的意义依赖于指令是什么。比如,前面说过,指令POP_JUMP_IF_FALSE,它的参数指的是跳转目标。BUILD_LIST,它的参数是列表的个数。LOAD_CONST,它的参数是常量的索引。

一些指令用简单的数字作为参数。对于另一些,虚拟机需要一点努力去发现它含意。标准库中的dis模块中有一个备忘单,它解释什么参数有什么意思,这让我们的代码更加简洁。比如,列表dis.hasname告诉我们LOAD_NAME、IMPORT_NAME、LOAD_GLOBAL,以及另外的 9 个指令的参数都有同样的意义:对于这些指令,它们的参数代表了代码对象中的名字列表的索引。

下一个方法是dispatch,它查找给定的指令并执行相应的操作。在 CPython 中,这个分派函数用一个巨大的 switch 语句实现,有超过 1500 行的代码。幸运的是,我们用的是 Python,我们的代码会简洁的多。我们会为每一个字节码名字定义一个方法,然后用getattr来查找。就像我们前面的小解释器一样,如果一条指令叫做FOO_BAR,那么它对应的方法就是byte_FOO_BAR。现在,我们先把这些方法当做一个黑盒子。每个指令方法都会返回None或者一个字符串why,有些情况下虚拟机需要这个额外why信息。这些指令方法的返回值,仅作为解释器状态的内部指示,千万不要和执行帧的返回值相混淆。

Block类

在我们完成每个字节码方法前,我们简单的讨论一下块。一个块被用于某种控制流,特别是异常处理和循环。它负责保证当操作完成后数据栈处于正确的状态。比如,在一个循环中,一个特殊的迭代器会存在栈中,当循环完成时它从栈中弹出。解释器需要检查循环仍在继续还是已经停止。

为了跟踪这些额外的信息,解释器设置了一个标志来指示它的状态。我们用一个变量why实现这个标志,它可以是None或者是下面几个字符串之一:"continue"、"break"、"excption"、return。它们指示对块栈和数据栈进行什么操作。回到我们迭代器的例子,如果块栈的栈顶是一个loop块,why的代码是continue,迭代器就应该保存在数据栈上,而如果why是break,迭代器就会被弹出。

块操作的细节比这个还要繁琐,我们不会花时间在这上面,但是有兴趣的读者值得仔细的看看。

指令

剩下了的就是完成那些指令方法了:byte_LOAD_FAST、byte_BINARY_MODULO等等。而这些指令的实现并不是很有趣,完整的实现在 GitHub 上[2]。(这里包括的指令足够执行我们前面所述的所有代码了。)

动态类型:编译器不知道它是什么

你可能听过 Python 是一种动态语言 —— 它是动态类型的。在我们建造解释器的过程中,已经透露出这样的信息。

动态的一个意思是很多工作是在运行时完成的。前面我们看到 Python 的编译器没有很多关于代码真正做什么的信息。举个例子,考虑下面这个简单的函数mod。它取两个参数,返回它们的模运算值。从它的字节码中,我们看到变量a和b首先被加载,然后字节码BINAY_MODULO完成这个模运算。

计算 19 % 5 得4,—— 一点也不奇怪。如果我们用不同类的参数呢?

刚才发生了什么?你可能在其它地方见过这样的语法,格式化字符串。

用符号%去格式化字符串会调用字节码BUNARY_MODULO。它取栈顶的两个值求模,不管这两个值是字符串、数字或是你自己定义的类的实例。字节码在函数编译时生成(或者说,函数定义时)相同的字节码会用于不同类的参数。

Python 的编译器关于字节码的功能知道的很少,而取决于解释器来决定BINAYR_MODULO应用于什么类型的对象并完成正确的操作。这就是为什么 Python 被描述为动态类型dynamically typed:直到运行前你不必知道这个函数参数的类型。相反,在一个静态类型语言中,程序员需要告诉编译器参数的类型是什么(或者编译器自己推断出参数的类型。)

编译器的无知是优化 Python 的一个挑战 —— 只看字节码,而不真正运行它,你就不知道每条字节码在干什么!你可以定义一个类,实现__mod__方法,当你对这个类的实例使用%时,Python 就会自动调用这个方法。所以,BINARY_MODULO其实可以运行任何代码。

看看下面的代码,第一个a % b看起来没有用。

不幸的是,对这段代码进行静态分析 —— 不运行它 —— 不能确定第一个a % b没有做任何事。用%调用__mod__可能会写一个文件,或是和程序的其他部分交互,或者其他任何可以在 Python 中完成的事。很难优化一个你不知道它会做什么的函数。在 Russell Power 和 Alex Rubinsteyn 的优秀论文中写道,“我们可以用多快的速度解释 Python?”,他们说,“在普遍缺乏类型信息下,每条指令必须被看作一个INVOKE_ARBITRARY_METHOD。”

总结

Byterun 是一个比 CPython 容易理解的简洁的 Python 解释器。Byterun 复制了 CPython 的主要结构:一个基于栈的解释器对称之为字节码的指令集进行操作,它们顺序执行或在指令间跳转,向栈中压入和从中弹出数据。解释器随着函数和生成器的调用和返回,动态的创建、销毁帧,并在帧之间跳转。Byterun 也有着和真正解释器一样的限制:因为 Python 使用动态类型,解释器必须在运行时决定指令的正确行为。

我鼓励你去反汇编你的程序,然后用 Byterun 来运行。你很快会发现这个缩短版的 Byterun 所没有实现的指令。完整的实现在 https://github.com/nedbat/byterun,或者你可以仔细阅读真正的 CPython 解释器ceval.c,你也可以实现自己的解释器!

致谢

感谢 Ned Batchelder 发起这个项目并引导我的贡献,感谢 Michael Arntzenius 帮助调试代码和这篇文章的修订,感谢 Leta Montopoli 的修订,以及感谢整个 Recurse Center 社区的支持和鼓励。所有的不足全是我自己没搞好。

作者: Allison Kaptur 译者:qingyunha[3] 校对:wxy[4]

本文由 LCTT[5] 原创翻译,Linux中国[6] 荣誉推出

[1]: http://akaptur.com

[2]: https://github.com/nedbat/byterun

[3]: https://github.com/qingyunha

[4]: https://github.com/wxy

[5]: https://github.com/LCTT/TranslateProject

[6]: http://linux.cn/

推荐文章



将文章分享给朋友是对我们最好的赞赏!




欢迎光临 邳州信息网 (https://www.pzxxw.com/) Powered by Discuz! X3.4