的微分方程表示变化率与其它变量间的关系。本质上微分方程就是用纯数学方式来描述变化率。前面第一个方程表示 “变量 y 相对于变量 x 的变化率刚好等于 x 。”第二个方程表示“无论 x 的值是多少, y 相对于 x 的变化率总是 2。”
微分方程非常有用,因为在现实世界中,描述复杂系统从一个瞬间到下一个瞬间的变化往往比想出一个描述系统在所有可能的瞬间的方程要容易。因此,微分方程被广泛应用于物理和工程领域。一个著名的微分方程是热传导方程heat equation。它能描述热量在物体中的扩散过程。要提出一个完全地描述物体在某时刻 t 的热量分布的函数很困难,但推理热量从某时刻到下一个时刻的扩散过程不太可能会让你绞尽脑汁——近冷者变热,近热者变冷。所以尽管热传导方程在形式上比起前面的例子要复杂得多,它也只是变化率的描述而已。它描述了在给定与周围的温差时,物体上任意一点的温度随时间的变化。
再来举一个更具体的例子。假如我在真空中竖直向上抛出一个网球,在我窒息之前它会落回来吗?这是我在高中物理课上被问到的问题,解决它只需要基本的牛顿运动方程。现在暂且假设我已经忘记了牛顿运动方程,只记得物体以恒定的加速度 g (大约为
)向地球加速运动。那么如何用微分方程来解决这个问题呢?
现在把我对高中物理仅存的记忆表示成微分方程。网球在离手后会向地球以 g 加速运动。也就是说网球的速度相对于时间的变化率为 g(在负方向上)。进一步,我们可以说球离地高度的变化率(也就是速度)随时间的变化率是负方向的 g 。其微分方程形式如下,其中 h 表示高度, t 表示时间:
它跟前面的微分方程看起来略有差别,因为这是所谓的二阶微分方程。我们讨论的是变化率的变化率,也许你还记得微积分课讲过,这需要用到二阶导数。这是方程左边部分看上去像被平方了的原因。但是该方程也仅仅表示了球向下以恒定的加速度 g 加速运动这一事实。
这跟前面的网球运动的方程基本上是一样的,只不过布什使用 x 代替了 h ,并且增加了一项来表示空气阻力的减速作用。这个新增项采用了最简单的形式来描述空气阻力的作用:空气减慢球速的比率正比于球的速度(这里 k 是一个常比例系数,我并不关心它的具体取值)。也就说是球运动得越快,空气阻力就越大,对球的减速作用越显著。
为了配置微分分析仪来解决这个微分方程,我们需要从布什称之为“输入面板”的东西开始。输入面板其实就是一张安装在支架上的坐标纸。如果想要解更复杂的方程,首先需要操作员在坐标纸上绘制好输入函数图像,然后在机器启动时用一个与机器主体相连的指针来跟踪函数图像的轨迹。在我们举的例子中,输入是常数 g ,所以我们只需将指针移动到正确的位置并让它保持不动即可。
剩下的变量 x 和 t 又是什么呢?变量 x 表示球的高度,是微分分析仪的输出。它会被绘制在输出面板上的坐标纸上。输出面板与输入面板类似,只是它没有指针,取而代之的是由微分分析仪驱动的绘图笔。变量 t 仅仅是按固定速率步进。(在前面模拟网球运动 Python 程序中,我们通过循环来增加 t 。)变量 t 来源于微分分析仪的电机,它通过匀速转动传动轴来驱动整个计算过程。
我发现以慢放的方式来推演电机启动时的级联因果过程对于理解微分分析仪的原理很有帮助。电机启动后立即驱动传动轴 t 匀速旋转。这样我们就有了时间的概念。这个传动轴有三个作用,分别由连接其上的三个竖直传动轴表示:它驱动了两个积分器的转盘的转动,同时带动输出面板的支架让绘图笔作图。
如果积分器的转轮被放置在转盘中心,那么传动轴 t 就不会带动其它传动轴转动。积分器的转盘会转动,但是放置在转盘中心的转轮不会被带动。这时输出图像将会是一条平坦的直线。出现这种情况是因为我们没有明确指定问题的初始条件。在上面的 Python 程序中,我们需要以常量或函数参数的形式用到网球的初始速度。在启动机器之前,我们通过将两个积分器的转盘调整到合适的位置来指定速度和加速度的初始值。
设置好这些之后,传动轴 t 的转动将会传导到整个系统之中。从物理上来说,许多部件会同时开始转动。但是我们可以认为转动首先传导到积分器 II,然后与基于 g 计算得到的加速度表达式求积分得到球的速度
。速度又反过来作为积分器 I 的输入,推动它的转盘让输出转轮以速率
转动。积分器 I 的输出作为最终结果将会被直接导向到输出面板上。
前面我有意避开了一个令人困惑的细节,那就是机器里有一个怪圈。积分器 II 以传动轴
为输入,但是该传动轴的转动又部分决定于积分器 II 的输出本身。这可能快把你绕吐了,但在物理上这并没有任何问题——因为所有部部件都是一同转动的。出现这种怪圈并没什么奇怪的,因为在用微分方程在描述某函数的变化率时,也经常会用该函数的函数的形式。(在这个例子中,加速度,即速度的变化率,取决于于速度。)
Alan Gluchoff. “Artillerymen and Mathematicians: Forest Ray Moulton and Changes in American Exterior Ballistics, 1885-1934.” Historia Mathematica, vol. 38, no. 4, 2011, pp. 506–547., https://www.sciencedirect.com/science/article/pii/S0315086011000279.??
Karl Kempf. “Electronic Computers within the Ordnance Corps,” 1961, accessed April 6, 2020, https://ftp.arl.army.mil/~mike/comphist/61ordnance/index.html.??